תקציר
We present detailed observations of the bright short-hard gamma-ray burst GRB 090510 made with the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi observatory. GRB 090510 is the first burst detected by the LAT that shows strong evidence for a deviation from a Band spectral fitting function during the prompt emission phase. The time-integrated spectrum is fit by the sum of a Band function with E peak = 3.9 ± 0.3MeV, which is the highest yet measured, and a hard power-law component with photon index -1.62 ± 0.03 that dominates the emission below ≈ 20keV and above ≈ 100MeV. The onset of the high-energy spectral component appears to be delayed by ≈ 0.1s with respect to the onset of a component well fit with a single Band function. A faint GBM pulse and a LAT photon are detected 0.5s before the main pulse. During the prompt phase, the LAT detected a photon with energy 30.5+5.8 -2.6GeV, the highest ever measured from a short GRB. Observation of this photon sets a minimum bulk outflow Lorentz factor, Γ≳1200, using simple γγ opacity arguments for this GRB at redshift z = 0.903 and a variability timescale on the order of tens of ms for the ≈ 100keV-few MeV flux. Stricter high confidence estimates imply Γ ≳ 1000 and still require that the outflows powering short GRBs are at least as highly relativistic as those of long-duration GRBs. Implications of the temporal behavior and power-law shape of the additional component on synchrotron/synchrotron self-Compton, external-shock synchrotron, and hadronic models are considered.
שפה מקורית | אנגלית |
---|---|
עמודים (מ-עד) | 1178-1190 |
מספר עמודים | 13 |
כתב עת | Astrophysical Journal |
כרך | 716 |
מספר גיליון | 2 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - 2010 |
פורסם באופן חיצוני | כן |