Fairness-Driven Private Collaborative Machine Learning

Dana Pessach, Tamir Tassa, Erez Shmueli

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

The performance of machine learning algorithms can be considerably improved when trained over larger datasets. In many domains, such as medicine and finance, larger datasets can be obtained if several parties, each having access to limited amounts of data, collaborate and share their data. However, such data sharing introduces significant privacy challenges. While multiple recent studies have investigated methods for private collaborative machine learning, the fairness of such collaborative algorithms has been overlooked. In this work, we suggest a feasible privacy-preserving pre-process mechanism for enhancing fairness of collaborative machine learning algorithms. An extensive evaluation of the proposed method shows that it is able to enhance fairness considerably with only a minor compromise in accuracy.

שפה מקוריתאנגלית
מספר המאמר27
עמודים (מ-עד)1-30
מספר עמודים30
כתב עתACM Transactions on Intelligent Systems and Technology
כרך15
מספר גיליון2
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 22 פבר׳ 2024

הערה ביבליוגרפית

Publisher Copyright:
© 2024 Copyright held by the owner/author(s).

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Fairness-Driven Private Collaborative Machine Learning'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי