ExpNet: Landmark-Free, Deep, 3D Facial Expressions

Feng Ju Chang, Anh Tuan Tran, Tal Hassner, Iacopo Masi, Ram Nevatia, Gerard Medioni

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

We describe a deep learning based method for estimating 3D facial expression coefficients. Unlike previous work, our process does not relay on facial landmark detection methods as a proxy step. Recent methods have shown that a CNN can be trained to regress accurate and discriminative 3D morphable model (3DMM) representations, directly from image intensities. By foregoing landmark detection, these methods were able to estimate shapes for occluded faces appearing in unprecedented viewing conditions. We build on those methods by showing that facial expressions can also be estimated by a robust, deep, landmark-free approach. Our ExpNet CNN is applied directly to the intensities of a face image and regresses a 29D vector of 3D expression coefficients. We propose a unique method for collecting data to train our network, leveraging on the robustness of deep networks to training label noise. We further offer a novel means of evaluating the accuracy of estimated expression coefficients: by measuring how well they capture facial emotions on the CK+ and EmotiW-17 emotion recognition benchmarks. We show that our ExpNet produces expression coefficients which better discriminate between facial emotions than those obtained using state of the art, facial landmark detectors. Moreover, this advantage grows as image scales drop, demonstrating that our ExpNet is more robust to scale changes than landmark detectors. Finally, our ExpNet is orders of magnitude faster than its alternatives.

שפה מקוריתאנגלית
כותר פרסום המארחProceedings - 13th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2018
מוציא לאורInstitute of Electrical and Electronics Engineers Inc.
עמודים122-129
מספר עמודים8
מסת"ב (אלקטרוני)9781538623350
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 5 יוני 2018
אירוע13th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2018 - Xi'an, סין
משך הזמן: 15 מאי 201819 מאי 2018

סדרות פרסומים

שםProceedings - 13th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2018

כנס

כנס13th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2018
מדינה/אזורסין
עירXi'an
תקופה15/05/1819/05/18

הערה ביבליוגרפית

Publisher Copyright:
© 2018 IEEE.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'ExpNet: Landmark-Free, Deep, 3D Facial Expressions'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי