תקציר
A central conjecture in inverse Galois theory, proposed by Dèbes and Deschamps, asserts that every finite split embedding problem over an arbitrary field can be regularly solved. We give an unconditional proof of a consequence of this conjecture, namely that such embedding problems can be regularly solved if one waives the requirement that the solution fields are normal. This extends previous results of M. Fried, Takahashi, Deschamps and the last two authors concerning the realization of finite groups as automorphism groups of field extensions.
שפה מקורית | אנגלית |
---|---|
עמודים (מ-עד) | 732-744 |
מספר עמודים | 13 |
כתב עת | Bulletin of the London Mathematical Society |
כרך | 51 |
מספר גיליון | 4 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - 1 אוג׳ 2019 |
הערה ביבליוגרפית
Publisher Copyright:© 2019 London Mathematical Society