תקציר
Neuromorphic cameras feature asynchronous event-based pixel-level processing and are particularly useful for object tracking in dynamic environments. Current approaches for feature extraction and optical flow with high-performing hybrid RGB-events vision systems require large computational models and supervised learning, which impose challenges for embedded vision and require annotated datasets. In this work, we propose ED-DCFNet, a small and efficient (< 72k) unsupervised multi-domain learning framework, which extracts events-frames shared features without requiring annotations, with comparable performance. Furthermore, we introduce an open-sourced event and frame-based dataset that captures indoor scenes with various lighting and motion-type conditions in realistic scenarios, which can be used for model building and evaluation. The dataset is available at https://github.com/NBELab/UnsupervisedTracking.
שפה מקורית | אנגלית |
---|---|
כותר פרסום המארח | Proceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024 |
מוציא לאור | IEEE Computer Society |
עמודים | 2191-2199 |
מספר עמודים | 9 |
מסת"ב (אלקטרוני) | 9798350365474 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - 2024 |
אירוע | 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024 - Seattle, ארצות הברית משך הזמן: 16 יוני 2024 → 22 יוני 2024 |
סדרות פרסומים
שם | IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops |
---|---|
ISSN (מודפס) | 2160-7508 |
ISSN (אלקטרוני) | 2160-7516 |
כנס
כנס | 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024 |
---|---|
מדינה/אזור | ארצות הברית |
עיר | Seattle |
תקופה | 16/06/24 → 22/06/24 |
הערה ביבליוגרפית
Publisher Copyright:© 2024 IEEE.