Dense correspondences and ancient texts

Tal Hassner, Lior Wolf, Nachum Dershowitz, Gil Sadeh2, Daniel Stökl Ben-Ezra

פרסום מחקרי: פרק בספר / בדוח / בכנספרקביקורת עמיתים


This chapter concerns applications of dense correspondences to images of a very different nature than those considered in previous chapters. Rather than images of natural or man-made scenes and objects, here, we deal with images of texts. We present a novel, dense correspondence-based approach to text image analysis instead of the more traditional approach of analysis at the character level (e.g., existing optical character recognition methods) or word level (the so called word spotting approach). We focus on the challenging domain of historical text image analysis. Such texts are handwritten and are often severely corrupted by noise and degradation, making them difficult to handle with existing methods. Our system is designed for the particular task of aligning such manuscript images to their transcripts. Our proposed alternative to performing this task manually is a system which directly matches the historical text image with a synthetic image rendered from the transcript. These matches are performed at the pixel level, by using SIFT flow applied to a novel per pixel representation. Our pipeline is robust to document degradation, variations between script styles and nonlinear image transformations.

שפה מקוריתאנגלית
כותר פרסום המארחDense Image Correspondences for Computer Vision
מוציא לאורSpringer International Publishing
מספר עמודים17
מסת"ב (אלקטרוני)9783319230481
מסת"ב (מודפס)9783319230474
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1 ינו׳ 2015

הערה ביבליוגרפית

Publisher Copyright:
© Springer International Publishing Switzerland 2015.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Dense correspondences and ancient texts'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי