Dense Correspondences across Scenes and Scales

Moria Tau, Tal Hassner

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים


We seek a practical method for establishing dense correspondences between two images with similar content, but possibly different 3D scenes. One of the challenges in designing such a system is the local scale differences of objects appearing in the two images. Previous methods often considered only few image pixels; matching only pixels for which stable scales may be reliably estimated. Recently, others have considered dense correspondences, but with substantial costs associated with generating, storing and matching scale invariant descriptors. Our work is motivated by the observation that pixels in the image have contexts - the pixels around them - which may be exploited in order to reliably estimate local scales. We make the following contributions. (i) We show that scales estimated in sparse interest points may be propagated to neighboring pixels where this information cannot be reliably determined. Doing so allows scale invariant descriptors to be extracted anywhere in the image. (ii) We explore three means for propagating this information: using the scales at detected interest points, using the underlying image information to guide scale propagation in each image separately, and using both images together. Finally, (iii), we provide extensive qualitative and quantitative results, demonstrating that scale propagation allows for accurate dense correspondences to be obtained even between very different images, with little computational costs beyond those required by existing methods.

שפה מקוריתאנגלית
מספר המאמר7229334
עמודים (מ-עד)875-888
מספר עמודים14
כתב עתIEEE Transactions on Pattern Analysis and Machine Intelligence
מספר גיליון5
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1 מאי 2016

הערה ביבליוגרפית

Publisher Copyright:
© 1979-2012 IEEE.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Dense Correspondences across Scenes and Scales'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי