Deep Face Recognition: A Survey

Iacopo Masi, Yue Wu, Tal Hassner, Prem Natarajan

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

Face recognition made tremendous leaps in the last five years with a myriad of systems proposing novel techniques substantially backed by deep convolutional neural networks (DCNN). Although face recognition performance sky-rocketed using deep-learning in classic datasets like LFW, leading to the belief that this technique reached human performance, it still remains an open problem in unconstrained environments as demonstrated by the newly released IJB datasets. This survey aims to summarize the main advances in deep face recognition and, more in general, in learning face representations for verification and identification. The survey provides a clear, structured presentation of the principal, state-of-the-art (SOTA) face recognition techniques appearing within the past five years in top computer vision venues. The survey is broken down into multiple parts that follow a standard face recognition pipeline: (a) how SOTA systems are trained and which public data sets have they used; (b) face preprocessing part (detection, alignment, etc.); (c) architecture and loss functions used for transfer learning (d) face recognition for verification and identification. The survey concludes with an overview of the SOTA results at a glance along with some open issues currently overlooked by the community.

שפה מקוריתאנגלית
כותר פרסום המארחProceedings - 31st Conference on Graphics, Patterns and Images, SIBGRAPI 2018
מוציא לאורInstitute of Electrical and Electronics Engineers Inc.
עמודים471-478
מספר עמודים8
מסת"ב (אלקטרוני)9781538692646
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2 יולי 2018
אירוע31st Conference on Graphics, Patterns and Images, SIBGRAPI 2018 - Foz do Iguacu, ברזיל
משך הזמן: 29 אוק׳ 20181 נוב׳ 2018

סדרות פרסומים

שםProceedings - 31st Conference on Graphics, Patterns and Images, SIBGRAPI 2018

כנס

כנס31st Conference on Graphics, Patterns and Images, SIBGRAPI 2018
מדינה/אזורברזיל
עירFoz do Iguacu
תקופה29/10/181/11/18

הערה ביבליוגרפית

Publisher Copyright:
© 2018 IEEE.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Deep Face Recognition: A Survey'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי