Data Mining by Means of Binary Representation: A Model for Similarity and Clustering

Zippy Erlich, Roy Gelbard, Israel Spiegler

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים


In this paper we outline a new method for clustering that is based on a binary representation of data records. The binary database relates each entity to all possible attribute values (domain) that entity may assume. The resulting binary matrix allows for similarity and clustering calculation by using the positive ('I' bits) of the entity vector. We formulate two indexes: Pair Similarity Index (PSI) to measure similarity between two entities and Group Similarity Index (GSI) to measure similarity within a group of entities. A threshold factor for each attribute domain is defined that is dependent on the domain but independent of the number of entities in the group. The similarity measure provides simplicity of storage and efficiency of calculation. A comparison of our similarity index to other indexes is made. Experiments with sample data indicate a 48% improvement of group similarity over standard methods pointing to the potential and merit of the binary approach to clustering and data mining.

שפה מקוריתאנגלית
עמודים (מ-עד)187-197
מספר עמודים11
כתב עתInformation Systems Frontiers
מספר גיליון2
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2002

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Data Mining by Means of Binary Representation: A Model for Similarity and Clustering'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי