תקציר
Human communication often involves information gaps between the interlocutors. For example, in an educational dialogue, a student often provides an answer that is incomplete, and there is a gap between this answer and the perfect one expected by the teacher. Successful dialogue then hinges on the teacher asking about this gap in an effective manner, thus creating a rich and interactive educational experience. We focus on the problem of generating such gap-focused questions (GFQs) automatically. We define the task, highlight key desired aspects of a good GFQ, and propose a model that satisfies these. Finally, we provide an evaluation by human annotators of our generated questions compared against human generated ones, demonstrating competitive performance.
שפה מקורית | אנגלית |
---|---|
כותר פרסום המארח | Short Papers |
מוציא לאור | Association for Computational Linguistics (ACL) |
עמודים | 215-227 |
מספר עמודים | 13 |
מסת"ב (אלקטרוני) | 9781959429715 |
סטטוס פרסום | פורסם - 2023 |
פורסם באופן חיצוני | כן |
אירוע | 61st Annual Meeting of the Association for Computational Linguistics, ACL 2023 - Toronto, קנדה משך הזמן: 9 יולי 2023 → 14 יולי 2023 |
סדרות פרסומים
שם | Proceedings of the Annual Meeting of the Association for Computational Linguistics |
---|---|
כרך | 2 |
ISSN (מודפס) | 0736-587X |
כנס
כנס | 61st Annual Meeting of the Association for Computational Linguistics, ACL 2023 |
---|---|
מדינה/אזור | קנדה |
עיר | Toronto |
תקופה | 9/07/23 → 14/07/23 |
הערה ביבליוגרפית
Publisher Copyright:© 2023 Association for Computational Linguistics.