Condorcet Relaxation In Spatial Voting

Arnold Filtser, Omrit Filtser

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

Consider a set of voters V, represented by a multiset in a metric space (X,d). The voters have to reach a decision - a point in X. A choice p ? X is called a ß-plurality point for V, if for any other choice q ? X it holds that |{v ? V | ß · d(p,v) = d(q,v)}| = |V2|. In other words, at least half of the voters “prefer” p over q, when an extra factor of ß is taken in favor of p. For ß = 1, this is equivalent to Condorcet winner, which rarely exists. The concept of ß-plurality was suggested by Aronov, de Berg, Gudmundsson, and Horton [SoCG 2020] as a relaxation of the Condorcet criterion. Denote by ß(*X,d) the value sup{ß | every finite multiset V in X admits a ß-plurality point}. The parameter ß* determines the amount of relaxation required in order to reach a stable decision. Aronov et al. showed that for the Euclidean plane ß(*R2,k·k2) = v23, and more generally, for ddimensional Euclidean space, v1d = ß(*Rd,k·k2) = v23. In this paper, we show that 0.557 = ß(*Rd,k·k2) for any dimension d (notice that v1d < 0.557 for any d = 4). In addition, we prove that for every metric space (X,d) it holds that v2 - 1 = ß(*X,d), and show that there exists a metric space for which ß(*X,d) = 12

שפה מקוריתאנגלית
כותר פרסום המארח35th AAAI Conference on Artificial Intelligence, AAAI 2021
מוציא לאורAssociation for the Advancement of Artificial Intelligence
פרקTechnical Tracks
עמודים5407-5414
מספר עמודים8
כרך35
מסת"ב (אלקטרוני)978-171383597-4
מסת"ב (מודפס)2159-5399
סטטוס פרסוםפורסם - 2021
פורסם באופן חיצוניכן
אירוע35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online
משך הזמן: 2 פבר׳ 20219 פבר׳ 2021

סדרות פרסומים

שם35th AAAI Conference on Artificial Intelligence, AAAI 2021
כרך6B

כנס

כנס35th AAAI Conference on Artificial Intelligence, AAAI 2021
עירVirtual, Online
תקופה2/02/219/02/21

הערה ביבליוגרפית

Publisher Copyright:
Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Condorcet Relaxation In Spatial Voting'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי