תקציר
Consider a set of voters V, represented by a multiset in a metric space (X,d). The voters have to reach a decision - a point in X. A choice p ? X is called a ß-plurality point for V, if for any other choice q ? X it holds that |{v ? V | ß · d(p,v) = d(q,v)}| = |V2|. In other words, at least half of the voters “prefer” p over q, when an extra factor of ß is taken in favor of p. For ß = 1, this is equivalent to Condorcet winner, which rarely exists. The concept of ß-plurality was suggested by Aronov, de Berg, Gudmundsson, and Horton [SoCG 2020] as a relaxation of the Condorcet criterion. Denote by ß(*X,d) the value sup{ß | every finite multiset V in X admits a ß-plurality point}. The parameter ß* determines the amount of relaxation required in order to reach a stable decision. Aronov et al. showed that for the Euclidean plane ß(*R2,k·k2) = v23, and more generally, for ddimensional Euclidean space, v1d = ß(*Rd,k·k2) = v23. In this paper, we show that 0.557 = ß(*Rd,k·k2) for any dimension d (notice that v1d < 0.557 for any d = 4). In addition, we prove that for every metric space (X,d) it holds that v2 - 1 = ß(*X,d), and show that there exists a metric space for which ß(*X,d) = 12
שפה מקורית | אנגלית |
---|---|
כותר פרסום המארח | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 |
מוציא לאור | Association for the Advancement of Artificial Intelligence |
פרק | Technical Tracks |
עמודים | 5407-5414 |
מספר עמודים | 8 |
כרך | 35 |
מסת"ב (אלקטרוני) | 978-171383597-4 |
מסת"ב (מודפס) | 2159-5399 |
סטטוס פרסום | פורסם - 2021 |
פורסם באופן חיצוני | כן |
אירוע | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online משך הזמן: 2 פבר׳ 2021 → 9 פבר׳ 2021 |
סדרות פרסומים
שם | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 |
---|---|
כרך | 6B |
כנס
כנס | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 |
---|---|
עיר | Virtual, Online |
תקופה | 2/02/21 → 9/02/21 |
הערה ביבליוגרפית
Publisher Copyright:Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.