Computing Gaussian mixture models with EM using equivalence constraints

Noam Shental, Aharon Bar-Hillel, Tomer Hertz, Daphna Weinshall

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

Density estimation with Gaussian Mixture Models is a popular generative technique used also for clustering. We develop a framework to incorporate side information in the form of equivalence constraints into the model estimation procedure. Equivalence constraints are defined on pairs of data points, indicating whether the points arise from the same source (positive constraints) or from different sources (negative constraints). Such constraints can be gathered automatically in some learning problems, and are a natural form of supervision in others. For the estimation of model parameters we present a closed form EM procedure which handles positive constraints, and a Generalized EM procedure using a Markov net which handles negative constraints. Using publicly available data sets we demonstrate that such side information can lead to considerable improvement in clustering tasks, and that our algorithm is preferable to two other suggested methods using the same type of side information.

שפה מקוריתאנגלית
כותר פרסום המארחAdvances in Neural Information Processing Systems 17 - Proceedings of the 2003 Conference, NIPS 2003
מוציא לאורNeural information processing systems foundation
מסת"ב (מודפס)0262201526, 9780262201520
סטטוס פרסוםפורסם - 2004
פורסם באופן חיצוניכן
אירוע17th Annual Conference on Neural Information Processing Systems, NIPS 2003 - Vancouver, BC, קנדה
משך הזמן: 8 דצמ׳ 200313 דצמ׳ 2003

סדרות פרסומים

שםAdvances in Neural Information Processing Systems
ISSN (מודפס)1049-5258

כנס

כנס17th Annual Conference on Neural Information Processing Systems, NIPS 2003
מדינה/אזורקנדה
עירVancouver, BC
תקופה8/12/0313/12/03

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Computing Gaussian mixture models with EM using equivalence constraints'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי