תקציר
Biologically plausible computational modeling of visual perception has the potential to link high-level visual experiences to their underlying neurons' spiking dynamic. In this work, we propose a neuromorphic (brain-inspired) Spiking Neural Network (SNN)-driven model for the reconstruction of colorful images from retinal inputs. We compared our results to experimentally obtained V1 neuronal activity maps in a macaque monkey using voltage-sensitive dye imaging and used the model to demonstrate and critically explore color constancy, color assimilation, and ambiguous color perception. Our parametric implementation allows critical evaluation of visual phenomena in a single biologically plausible computational framework. It uses a parametrized combination of high and low pass image filtering and SNN-based filling-in Poisson processes to provide adequate color image perception while accounting for differences in individual perception.
שפה מקורית | אנגלית אמריקאית |
---|---|
מספר המאמר | 10 |
עמודים (מ-עד) | e1010648 |
מספר עמודים | 1 |
כתב עת | PLoS Computational Biology |
כרך | 18 |
מספר גיליון | 10 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - 1 אוק׳ 2022 |
הערה ביבליוגרפית
Publisher Copyright:Copyright: © 2022 Cohen-Duwek et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Copyright: © 2022 Cohen-Duwek et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.