Cold Item Integration in Deep Hybrid Recommenders via Tunable Stochastic Gates

Oren Barkan, Roy Hirsch, Ori Katz, Avi Caciularu, Jonathan Weill, Noam Koenigstein

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

A major challenge in collaborative filtering methods is how to produce recommendations for cold items (items with no ratings), or integrate cold items into an existing catalog. Over the years, a variety of hybrid recommendation models have been proposed to address this problem by utilizing items' metadata and content along with their ratings or usage patterns. In this work, we wish to revisit the cold start problem in order to draw attention to an overlooked challenge: the ability to integrate and balance between (regular) warm items and completely cold items. In this case, two different challenges arise: (1) preserving high-quality performance on warm items, while (2) learning to promote cold items to relevant users. First, we show that these two objectives are in fact conflicting, and the balance between them depends on the business needs and the application at hand. Next, we propose a novel hybrid recommendation algorithm that bridges these two conflicting objectives and enables a harmonized balance between preserving high accuracy for warm items while effectively promoting completely cold items. We demonstrate the effectiveness of the proposed algorithm on movies, apps, and articles recommendations, and provide an empirical analysis of the cold-warm trade-off.

שפה מקוריתאנגלית
כותר פרסום המארחProceedings - 21st IEEE International Conference on Data Mining, ICDM 2021
עורכיםJames Bailey, Pauli Miettinen, Yun Sing Koh, Dacheng Tao, Xindong Wu
מוציא לאורInstitute of Electrical and Electronics Engineers Inc.
עמודים994-999
מספר עמודים6
מסת"ב (אלקטרוני)9781665423984
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2021
אירוע21st IEEE International Conference on Data Mining, ICDM 2021 - Virtual, Online, ניו זילנד
משך הזמן: 7 דצמ׳ 202110 דצמ׳ 2021

סדרות פרסומים

שםProceedings - IEEE International Conference on Data Mining, ICDM
כרך2021-December
ISSN (מודפס)1550-4786

כנס

כנס21st IEEE International Conference on Data Mining, ICDM 2021
מדינה/אזורניו זילנד
עירVirtual, Online
תקופה7/12/2110/12/21

הערה ביבליוגרפית

Publisher Copyright:
© 2021 IEEE.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Cold Item Integration in Deep Hybrid Recommenders via Tunable Stochastic Gates'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי