COHESENTIA: A Novel Benchmark of Incremental versus Holistic Assessment of Coherence in Generated Texts

Aviya Maimon, Reut Tsarfaty

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

Coherence is a linguistic term that refers to the relations between small textual units (sentences, propositions), which make the text logically consistent and meaningful to the reader. With the advances of generative foundational models in NLP, there is a pressing need to automatically assess the human-perceived coherence of automatically generated texts. Up until now, little work has been done on explicitly assessing the coherence of generated texts and analyzing the factors contributing to (in)coherence. Previous work on the topic used other tasks, e.g., sentence reordering, as proxies of coherence, rather than approaching coherence detection heads on. In this paper, we introduce COHESENTIA, a novel benchmark of human-perceived coherence of automatically generated texts. Our annotation protocol reflects two perspectives; one is global, assigning a single coherence score, and the other is incremental, scoring sentence by sentence. The incremental method produces an (in)coherence score for each text fragment and also pinpoints reasons for incoherence at that point. Our benchmark contains 500 automatically-generated and human-annotated paragraphs, each annotated in both methods, by multiple raters. Our analysis shows that the inter-annotator agreement in the incremental mode is higher than in the holistic alternative, and our experiments show that standard LMs fine-tuned for coherence detection show varied performance on the different factors contributing to (in)coherence. All in all, these models yield unsatisfactory performance, emphasizing the need for developing more reliable methods for coherence assessment.

שפה מקוריתאנגלית
כותר פרסום המארחEMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings
עורכיםHouda Bouamor, Juan Pino, Kalika Bali
מוציא לאורAssociation for Computational Linguistics (ACL)
עמודים5328-5343
מספר עמודים16
מסת"ב (אלקטרוני)9798891760608
סטטוס פרסוםפורסם - 2023
פורסם באופן חיצוניכן
אירוע2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023 - Hybrid, Singapore, סינגפור
משך הזמן: 6 דצמ׳ 202310 דצמ׳ 2023

סדרות פרסומים

שםEMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings

כנס

כנס2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023
מדינה/אזורסינגפור
עירHybrid, Singapore
תקופה6/12/2310/12/23

הערה ביבליוגרפית

Publisher Copyright:
© 2023 Association for Computational Linguistics.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'COHESENTIA: A Novel Benchmark of Incremental versus Holistic Assessment of Coherence in Generated Texts'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי