CNN prediction of future disease activity for multiple sclerosis patients from baseline MRI and lesion labels

Nazanin Mohammadi Sepahvand, Tal Hassner, Douglas L. Arnold, Tal Arbel

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

New T2w and gadolineum-enhancing lesions in Magnetic Resonance Images (MRI) are indicators of new disease activity in Multiple Sclerosis (MS) patients. Predicting future disease activity could help predict the progression of the disease as well as efficacy of treatment. We introduce a convolutional neural network (CNN) framework for future MRI disease activity prediction in relapsing-remitting MS (RRMS) patients from multi-modal MR images at baseline and illustrate how the inclusion of T2w lesion labels at baseline can significantly improve prediction accuracy by drawing the attention of the network to the location of lesions. Next, we develop a segmentation network to automatically infer lesion labels when semi-manual expert lesion labels are unavailable. Both prediction and segmentation networks are trained and tested on a large, proprietary, multi-center, multi-modal, clinical trial dataset consisting of 1068 patients. Testing based on a dataset of 95 patients shows that our framework reaches very high performance levels (sensitivities of 80.11% and specificities of 79.16%) when semi-manual expert labels are included as input at baseline in addition to multi-modal MRI. Even with inferred lesion labels replacing semi-manual labels, the method significantly outperforms an identical end-to-end CNN which only includes baseline multi-modal MRI.

שפה מקוריתאנגלית
כותר פרסום המארחBrainlesion
כותר משנה של פרסום המארחGlioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries - 4th International Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018, Revised Selected Papers
עורכיםSpyridon Bakas, Mauricio Reyes, Farahani Keyvan, Alessandro Crimi, Theo van Walsum, Hugo Kuijf
מוציא לאורSpringer Verlag
עמודים57-69
מספר עמודים13
מסת"ב (מודפס)9783030117221
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2019
אירוע4th International MICCAI Brainlesion Workshop, BrainLes 2018 held in conjunction with the Medical Image Computing for Computer Assisted Intervention Conference, MICCAI 2018 - Granada, ספרד
משך הזמן: 16 ספט׳ 201820 ספט׳ 2018

סדרות פרסומים

שםLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
כרך11383 LNCS
ISSN (מודפס)0302-9743
ISSN (אלקטרוני)1611-3349

כנס

כנס4th International MICCAI Brainlesion Workshop, BrainLes 2018 held in conjunction with the Medical Image Computing for Computer Assisted Intervention Conference, MICCAI 2018
מדינה/אזורספרד
עירGranada
תקופה16/09/1820/09/18

הערה ביבליוגרפית

Publisher Copyright:
© Springer Nature Switzerland AG 2019.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'CNN prediction of future disease activity for multiple sclerosis patients from baseline MRI and lesion labels'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי