תקציר
In Recommender Systems research, algorithms are often characterized as either Collaborative Filtering (CF) or Content Based (CB). CF algorithms are trained using a dataset of user preferences while CB algorithms are typically based on item profiles. These approaches harness different data sources and therefore the resulting recommended items are generally very different. This paper presents the CB2CF, a deep neural multiview model that serves as a bridge from items content into their CF representations. CB2CF is a “real-world” algorithm designed for Microsoft Store services that handle around a billion users worldwide. CB2CF is demonstrated on movies and apps recommendations, where it is shown to outperform an alternative CB model on completely cold items.
שפה מקורית | אנגלית |
---|---|
כותר פרסום המארח | RecSys 2019 - 13th ACM Conference on Recommender Systems |
מוציא לאור | Association for Computing Machinery, Inc |
עמודים | 228-236 |
מספר עמודים | 9 |
מסת"ב (אלקטרוני) | 9781450362436 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - 10 ספט׳ 2019 |
פורסם באופן חיצוני | כן |
אירוע | 13th ACM Conference on Recommender Systems, RecSys 2019 - Copenhagen, דנמרק משך הזמן: 16 ספט׳ 2019 → 20 ספט׳ 2019 |
סדרות פרסומים
שם | RecSys 2019 - 13th ACM Conference on Recommender Systems |
---|
כנס
כנס | 13th ACM Conference on Recommender Systems, RecSys 2019 |
---|---|
מדינה/אזור | דנמרק |
עיר | Copenhagen |
תקופה | 16/09/19 → 20/09/19 |
הערה ביבליוגרפית
Publisher Copyright:© 2019 Copyright is held by the owner/author(s).