Bipartite diameter and other measures under translation

Boris Aronov, Omrit Filtser, Matthew J. Katz, Khadijeh Sheikhan

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

Let A and B be two sets of points in Rd, where |A| = |B| = n and the distance between them is defined by some bipartite measure dist(A, B). We study several problems in which the goal is to translate the set B, so that dist(A, B) is minimized. The main measures that we consider are (i) the diameter in two and three dimensions, that is diam(A, B) = max{d(a, b) | a ∈ A, b ∈ B}, where d(a, b) is the Euclidean distance between a and b, (ii) the uniformity in the plane, that is uni(A, B) = diam(A, B) − d(A, B), where d(A, B) = min{d(a, b) | a ∈ A, b ∈ B}, and (iii) the union width in two and three dimensions, that is union_width(A, B) = width(A ∪ B). For each of these measures we present efficient algorithms for finding a translation of B that minimizes the distance: For diameter we present near-linear-time algorithms in R2 and R3, for uniformity we describe a roughly O(n9/4)-time algorithm, and for union width we offer a near-linear-time algorithm in R2 and a quadratic-time one in R3

שפה מקוריתאנגלית
כותר פרסום המארח36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019
עורכיםRolf Niedermeier, Christophe Paul
מוציא לאורSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
מסת"ב (אלקטרוני)9783959771009
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1 מרץ 2019
פורסם באופן חיצוניכן
אירוע36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019 - Berlin, גרמניה
משך הזמן: 13 מרץ 201916 מרץ 2019

סדרות פרסומים

שםLeibniz International Proceedings in Informatics, LIPIcs
כרך126
ISSN (מודפס)1868-8969

כנס

כנס36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019
מדינה/אזורגרמניה
עירBerlin
תקופה13/03/1916/03/19

הערה ביבליוגרפית

Publisher Copyright:
© Boris Aronov, Omrit Filtser, Matthew J. Katz, and Khadijeh Sheikhan.

פורמט ציטוט ביבליוגרפי