Automatic Ensemble of Deep Learning Using KNN and GA Approaches

Ben Zagagy, Maya Herman, Ofer Levi

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים


Selecting the correct deep learning architecture is a significant issue when training a new deep learning neural networks model. Even when all of other DL hyper-parameters are accurate, the selected architecture will define the final classification quality of the generated model. In our previous paper we described a unique classification methodology called ACKEM for efficient and automatic classification of data, based on an ensemble of multiple DL models and KNN input-based architecture selection. The ACKEM methodology does not restrict the classification to one specific model with one specific architecture, as a specific architecture might not fit some of the input data. The ACKEM methodology had a major constraint – it used a brute-force approach for selecting the most suitable K for its inner usage of the KNN algorithm. In this paper, we propose a genetic algorithm (GA) based approach, for selecting the most suitable K. This method was tested over multiple datasets including the Covid-19 Radiography Chest X-Ray Images Dataset, the Malaria Cells Dataset, the Road Potholes Dataset, and the Voice Commands Dataset. All the tested datasets served us in our previous work on ACKEM, as well. This paper proves that replacing the inefficient method of brute force with a GA approach can improve the ACKEM method’s complexity without harming its promising results.

שפה מקוריתאנגלית
כותר פרסום המארחIntelligent Computing - Proceedings of the 2021 Computing Conference
עורכיםKohei Arai
מוציא לאורSpringer Science and Business Media Deutschland GmbH
מספר עמודים12
מסת"ב (מודפס)9783030801250
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2021
אירועComputing Conference, 2021 - Virtual, Online
משך הזמן: 15 יולי 202116 יולי 2021

סדרות פרסומים

שםLecture Notes in Networks and Systems
ISSN (מודפס)2367-3370
ISSN (אלקטרוני)2367-3389


כנסComputing Conference, 2021
עירVirtual, Online

הערה ביבליוגרפית

Publisher Copyright:
© 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Automatic Ensemble of Deep Learning Using KNN and GA Approaches'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי