Approximation algorithms for node and element connectivity augmentation problems

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

In connectivity augmentation problems we are given a graph G=(V,EG) and an edge set E on V, and seek a min-size edge set J⊆E such that G∪J has larger connectivity than G. In the 1-Connectivity Augmentation (1-CA) problem G is connected and G∪J should be 2-connected. In the Leaf to Leaf1-CA every edge in E connects two leaves in the block-tree of G. For this version we give a simple combinatorial 5/3-approximation algorithm, improving the 1.892 approximation that applies for the general case. We will also show by a simple proof that if the Steiner Tree problem admits approximation ratio α then 1-CA admits approximation ratio 1+ln(4-x)+ϵ, where x is the solution to the equation 1+ln(4-x)=α+(α-1)x. For the currently best value of α=ln4+ϵ this gives approximation ratio 1.942. This is worse than the best known ratio 1.892, but has the advantage of using Steiner Tree approximation as a “black box”. In the Element Connectivity Augmentation problem we are given a graph G=(V,E), S⊆V, and connectivity requirements {r(u,v):u,v∈S}. The goal is to find a min-size set J of new edges on S such that for all u,v∈S the graph G∪J contains r(u, v) uv-paths such that no two of them have an edge or a node in V\S in common. The problem is NP-hard even when rmax=maxu,v∈Sr(u,v)=2. We obtain approximation ratio 3/2, improving the previous best ratio 7/4. For the case of degree bounds on S we obtain the same ratio with just +1 degree violation, which is tight, since deciding whether there exists a feasible solution is NP-hard even when rmax=2.

שפה מקוריתאנגלית
כתב עתTheory of Computing Systems
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםהתקבל/בדפוס - 2024

הערה ביבליוגרפית

Publisher Copyright:
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Approximation algorithms for node and element connectivity augmentation problems'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי