Approximating rooted connectivity augmentation problems

פרסום מחקרי: פרק בספר / בדוח / בכנספרקביקורת עמיתים

תקציר

A graph is called ℓ-connected from U tor if there are ℓ internally disjoint paths from every node u ∈ U to r. The Rooted Subset Connectivity Augmentation Problem (RSCAP) is as follows: given a graph G = (V + r, E), a node subset U ⊆ V, and an integer k, find a smallest set F of new edges such that G + F is k-connected from U to r. In this paper we consider mainly a restricted version of RSCAP in which the input graph G is already (k - 1)-connected from U to r. For this version we give an O(ln |U|)-approximation algorithm, and show that the problem cannot achieve a better approximation guarantee than the Set Cover Problem (SCP) on |U| elements and with |V| - |U| sets. For the general version of RSCAP we give an O(ln k ln |U|)-approximation algorithm. For U = V we get the Rooted Connectivity Augmentation Problem (RCAP). For directed graphs RCAP is polynomially solvable, but for undirected graphs its complexity status is not known: no polynomial algorithm is known, and it is also not known to be NP-hard. For undirected graphs with the input graph G being (k - 1)-connected from V to r, we give an algorithm that computes a solution of size exceeding a lower bound of the optimum by at most (k - 1)/2 edges.

שפה מקוריתאנגלית
כותר פרסום המארחLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
עורכיםSanjeev Asora, Amit Sahai, Klaus Jansen, Jose D.P. Rolim
מוציא לאורSpringer Verlag
עמודים141-152
מספר עמודים12
מסת"ב (מודפס)3540407707, 9783540407706
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2003

סדרות פרסומים

שםLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
כרך2764
ISSN (מודפס)0302-9743
ISSN (אלקטרוני)1611-3349

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Approximating rooted connectivity augmentation problems'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי