Anonymization of centralized and distributed social networks by sequential clustering

Tamir Tassa, Dror J. Cohen

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

We study the problem of privacy-preservation in social networks. We consider the distributed setting in which the network data is split between several data holders. The goal is to arrive at an anonymized view of the unified network without revealing to any of the data holders information about links between nodes that are controlled by other data holders. To that end, we start with the centralized setting and offer two variants of an anonymization algorithm which is based on sequential clustering (Sq). Our algorithms significantly outperform the SaNGreeA algorithm due to Campan and Truta which is the leading algorithm for achieving anonymity in networks by means of clustering. We then devise secure distributed versions of our algorithms. To the best of our knowledge, this is the first study of privacy preservation in distributed social networks. We conclude by outlining future research proposals in that direction.

שפה מקוריתאנגלית
מספר המאמר6081867
עמודים (מ-עד)311-324
מספר עמודים14
כתב עתIEEE Transactions on Knowledge and Data Engineering
כרך25
מספר גיליון2
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - פבר׳ 2013

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Anonymization of centralized and distributed social networks by sequential clustering'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי