Adaptive sequence submodularity

Marko Mitrovic, Ehsan Kazemi, Moran Feldman, Andreas Krause, Amin Karbasi

פרסום מחקרי: פרסום בכתב עתמאמר מכנסביקורת עמיתים

תקציר

In many machine learning applications, one needs to interactively select a sequence of items (e.g., recommending movies based on a user's feedback) or make sequential decisions in a certain order (e.g., guiding an agent through a series of states). Not only do sequences already pose a dauntingly large search space, but we must also take into account past observations, as well as the uncertainty of future outcomes. Without further structure, finding an optimal sequence is notoriously challenging, if not completely intractable. In this paper, we view the problem of adaptive and sequential decision making through the lens of submodularity and propose an adaptive greedy policy with strong theoretical guarantees. Additionally, to demonstrate the practical utility of our results, we run experiments on Amazon product recommendation and Wikipedia link prediction tasks.

שפה מקוריתאנגלית
כתב עתAdvances in Neural Information Processing Systems
כרך32
סטטוס פרסוםפורסם - 2019
פורסם באופן חיצוניכן
אירוע33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019 - Vancouver, קנדה
משך הזמן: 8 דצמ׳ 201914 דצמ׳ 2019

הערה ביבליוגרפית

Publisher Copyright:
© 2019 Neural information processing systems foundation. All rights reserved.

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Adaptive sequence submodularity'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי