תקציר
In recent years, several studies proposed privacy-preserving algorithms for solving Distributed Constraint Optimization Problems (DCOPs). All of those studies assumed that agents do not collude. In this study we propose the first privacy-preserving DCOP algorithm that is immune to coalitions, under the assumption of honest majority. Our algorithm - PC-SyncBB - is based on the classical Branch and Bound DCOP algorithm. It offers constraint, topology and decision privacy. We evaluate its performance on different benchmarks, problem sizes, and constraint densities. We show that achieving security against coalitions is feasible. As all existing privacy-preserving DCOP algorithms base their security on assuming solitary conduct of the agents, we view this study as an essential first step towards lifting this potentially harmful assumption in all those algorithms.
שפה מקורית | אנגלית |
---|---|
כותר פרסום המארח | Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019 |
עורכים | Sarit Kraus |
מוציא לאור | International Joint Conferences on Artificial Intelligence |
עמודים | 4774-4780 |
מספר עמודים | 7 |
מסת"ב (אלקטרוני) | 9780999241141 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - 2019 |
אירוע | 28th International Joint Conference on Artificial Intelligence, IJCAI 2019 - Macao, סין משך הזמן: 10 אוג׳ 2019 → 16 אוג׳ 2019 |
סדרות פרסומים
שם | IJCAI International Joint Conference on Artificial Intelligence |
---|---|
כרך | 2019-August |
ISSN (מודפס) | 1045-0823 |
כנס
כנס | 28th International Joint Conference on Artificial Intelligence, IJCAI 2019 |
---|---|
מדינה/אזור | סין |
עיר | Macao |
תקופה | 10/08/19 → 16/08/19 |
הערה ביבליוגרפית
Publisher Copyright:© 2019 International Joint Conferences on Artificial Intelligence. All rights reserved.