תקציר
In this paper we prove some generalizations of the classical Hasse–Davenport product relation for certain arithmetic factors defined on a p-adic field F, among them one finds the ϵ-factors appearing in Tate’s thesis. We then show that these generalizations are equivalent to some representation theoretic identities relating the determinant of ramified local coefficients matrices defined for coverings of SL2(F) to Plancherel measures and γ-factors.
שפה מקורית | אנגלית |
---|---|
כתב עת | Forum Mathematicum |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - 26 מרץ 2024 |
הערה ביבליוגרפית
Publisher Copyright:© 2024 Walter de Gruyter GmbH. All rights reserved.