A node-capacitated okamura-seymour theorem

James R. Lee, Manor Mendel, Mohamad Moharrami

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים


The classical Okamura-Seymour theorem states that for an edge-capacitated, multi-commodity flow instance in which all terminals lie on a single face of a planar graph, there exists a feasible concurrent flow if and only if the cut conditions are satisfied. Simple examples show that a similar theorem is impossible in the node-capacitated setting. Nevertheless, we prove that an approximate flow/cut theorem does hold: For some universal " ε > 0, if the node cut conditions are satisfied, then one can simultaneously route an " ε- fraction of all the demands. This answers an open question of Chekuri and Kawarabayashi. More generally, we show that this holds in the setting of multi-commodity polymatroid networks introduced by Chekuri, et. al. Our approach employs a new type of random metric embedding in order to round the convex programs corresponding to these more general flow problems.

שפה מקוריתאנגלית
כותר פרסום המארחSTOC 2013 - Proceedings of the 2013 ACM Symposium on Theory of Computing
מספר עמודים10
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2013
אירוע45th Annual ACM Symposium on Theory of Computing, STOC 2013 - Palo Alto, CA, ארצות הברית
משך הזמן: 1 יוני 20134 יוני 2013

סדרות פרסומים

שםProceedings of the Annual ACM Symposium on Theory of Computing
ISSN (מודפס)0737-8017


כנס45th Annual ACM Symposium on Theory of Computing, STOC 2013
מדינה/אזורארצות הברית
עירPalo Alto, CA

פורמט ציטוט ביבליוגרפי