תקציר
Recent advances in OCR have shown that an end-to-end (E2E) training pipeline that includes both detection and recognition leads to the best results. However, many existing methods focus primarily on Latin-alphabet languages, often even only case-insensitive English characters. In this paper, we propose an E2E approach, Multiplexed Multilingual Mask TextSpotter, that performs script identification at the word level and handles different scripts with different recognition heads, all while maintaining a unified loss that simultaneously optimizes script identification and multiple recognition heads. Experiments show that our method outperforms the single-head model with similar number of parameters in end-to-end recognition tasks, and achieves state-of-the-art results on MLT17 and MLT19 joint text detection and script identification benchmarks. We believe that our work is a step towards the end-to-end trainable and scalable multilingual multi-purpose OCR system. Our code and model will be released.
שפה מקורית | אנגלית |
---|---|
כותר פרסום המארח | Proceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 |
מוציא לאור | IEEE Computer Society |
עמודים | 4545-4555 |
מספר עמודים | 11 |
מסת"ב (אלקטרוני) | 9781665445092 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - 2021 |
פורסם באופן חיצוני | כן |
אירוע | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 - Virtual, Online, ארצות הברית משך הזמן: 19 יוני 2021 → 25 יוני 2021 |
סדרות פרסומים
שם | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
ISSN (מודפס) | 1063-6919 |
כנס
כנס | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 |
---|---|
מדינה/אזור | ארצות הברית |
עיר | Virtual, Online |
תקופה | 19/06/21 → 25/06/21 |
הערה ביבליוגרפית
Publisher Copyright:© 2021 IEEE