A general framework for approximate nearest subspace search

Ronen Basri, Tal Hassner, Lihi Zelnik-Manor

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

Subspaces offer convenient means of representing information in many Pattern Recognition, Machine Vision, and Statistical Learning applications. Contrary to the growing popularity of subspace representations, the problem of efficiently searching through large subspace databases has received little attention in the past. In this paper we present a general solution to the Approximate Nearest Subspace search problem. Our solution uniformly handles cases where both query and database elements may differ in dimensionality, where the database contains subspaces of different dimensions, and where the queries themselves may be subspaces. To this end we present a simple mapping from subspaces to points, thus reducing the problem to the well studied Approximate Nearest Neighbor problem on points. We provide theoretical proofs of correctness and error bounds of our construction and demonstrate its performance on synthetic and real data. Our tests indicate that an approximate nearest subspace can be located significantly faster than the nearest subspace, with little loss of accuracy.

שפה מקוריתאנגלית
כותר פרסום המארח2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops 2009
עמודים109-116
מספר עמודים8
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2009
אירוע2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops 2009 - Kyoto, יפן
משך הזמן: 27 ספט׳ 20094 אוק׳ 2009

סדרות פרסומים

שם2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops 2009

כנס

כנס2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops 2009
מדינה/אזוריפן
עירKyoto
תקופה27/09/094/10/09

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'A general framework for approximate nearest subspace search'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי