תקציר
Motivated by the study of deletion channels, this paper presents improved bounds on the number of subsequences obtained from a binary string X of length n under t deletions. It is known that the number of subsequences in this setting strongly depends on the number of runs in the string X; where a run is a maximal substring of the same character. Our improved bounds are obtained by a structural analysis of the family of r-run strings X, an analysis in which we identify the extremal strings with respect to the number of subsequences. Specifically, for every r, we present r-run strings with the minimum (respectively maximum) number of subsequences under any t deletions; we perform an exact analysis of the number of subsequences of these extremal strings; and show that this number can be calculated in polynomial time.
שפה מקורית | אנגלית |
---|---|
מספר המאמר | 7061929 |
עמודים (מ-עד) | 2300-2312 |
מספר עמודים | 13 |
כתב עת | IEEE Transactions on Information Theory |
כרך | 61 |
מספר גיליון | 5 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - 1 מאי 2015 |
הערה ביבליוגרפית
Publisher Copyright:© 1963-2012 IEEE.