Viewing real-world faces in 3D

Tal Hassner

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We present a data-driven method for estimating the 3D shapes of faces viewed in single, unconstrained photos (aka 'in-the-wild'). Our method was designed with an emphasis on robustness and efficiency-with the explicit goal of deployment in real-world applications which reconstruct and display faces in 3D. Our key observation is that for many practical applications, warping the shape of a reference face to match the appearance of a query, is enough to produce realistic impressions of the query's 3D shape. Doing so, however, requires matching visual features between the (possibly very different) query and reference images, while ensuring that a plausible face shape is produced. To this end, we describe an optimization process which seeks to maximize the similarity of appearances and depths, jointly, to those of a reference model. We describe our system for monocular face shape reconstruction and present both qualitative and quantitative experiments, comparing our method against alternative systems, and demonstrating its capabilities. Finally, as a testament to its suitability for real-world applications, we offer an open, on-line implementation of our system, providing unique means of instant 3D viewing of faces appearing in web photos.

Original languageEnglish
Title of host publicationProceedings - 2013 IEEE International Conference on Computer Vision, ICCV 2013
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3607-3614
Number of pages8
ISBN (Print)9781479928392
DOIs
StatePublished - 2013
Event2013 14th IEEE International Conference on Computer Vision, ICCV 2013 - Sydney, NSW, Australia
Duration: 1 Dec 20138 Dec 2013

Publication series

NameProceedings of the IEEE International Conference on Computer Vision

Conference

Conference2013 14th IEEE International Conference on Computer Vision, ICCV 2013
Country/TerritoryAustralia
CitySydney, NSW
Period1/12/138/12/13

Keywords

  • Faces
  • Monocular 3D
  • Single-view 3D reconstruction

Fingerprint

Dive into the research topics of 'Viewing real-world faces in 3D'. Together they form a unique fingerprint.

Cite this