Abstract
Summarization techniques strive to create a concise summary that conveys the essential information from a given document. However, these techniques are often inadequate for summarizing longer documents containing multiple pages of semantically complex content with various topics. Hence, in this work, we present a Topic-Conditional Summarization (TCS) method, that produces different summaries each conforming to a different topic. TCS is an unsupervised method and does not require ground truth summaries. The proposed algorithm adapts the TextRank paradigm and enhances it with a language model specialized in a set of documents and their topics. Extensive evaluations across multiple datasets indicate that our method improves upon other alternatives by a size-able margin.
| Original language | English |
|---|---|
| Pages (from-to) | 11286-11290 |
| Number of pages | 5 |
| Journal | Proceedings - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing |
| DOIs | |
| State | Published - 2024 |
| Event | 2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 - Seoul, Korea, Republic of Duration: 14 Apr 2024 → 19 Apr 2024 |
Bibliographical note
Publisher Copyright:©2024 IEEE.
Keywords
- Extractive Summarization