(Un)solving Morphological Inflection: Lemma Overlap Artificially Inflates Models' Performance

Omer Goldman, David Guriel, Reut Tsarfaty

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In the domain of Morphology, Inflection is a fundamental and important task that gained a lot of traction in recent years, mostly via SIGMORPHON's shared-tasks. With average accuracy above 0.9 over the scores of all languages, the task is considered mostly solved using relatively generic neural seq2seq models, even with little data provided. In this work, we propose to re-evaluate morphological inflection models by employing harder train-test splits that will challenge the generalization capacity of the models. In particular, as opposed to the naïve split-by-form, we propose a split-by-lemma method to challenge the performance on existing benchmarks. Our experiments with the three top-ranked systems on the SIGMORPHON's 2020 shared-task show that the lemma-split presents an average drop of 30 percentage points in macro-average for the 90 languages included. The effect is most significant for low-resourced languages with a drop as high as 95 points, but even high-resourced languages lose about 10 points on average. Our results clearly show that generalizing inflection to unseen lemmas is far from being solved, presenting a simple yet effective means to promote more sophisticated models.

Original languageEnglish
Title of host publicationACL 2022 - 60th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Short Papers)
EditorsSmaranda Muresan, Preslav Nakov, Aline Villavicencio
PublisherAssociation for Computational Linguistics (ACL)
Pages864-870
Number of pages7
ISBN (Electronic)9781955917223
StatePublished - 2022
Externally publishedYes
Event60th Annual Meeting of the Association for Computational Linguistics, ACL 2022 - Dublin, Ireland
Duration: 22 May 202227 May 2022

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
Volume2
ISSN (Print)0736-587X

Conference

Conference60th Annual Meeting of the Association for Computational Linguistics, ACL 2022
Country/TerritoryIreland
CityDublin
Period22/05/2227/05/22

Bibliographical note

Publisher Copyright:
© 2022 Association for Computational Linguistics.

Fingerprint

Dive into the research topics of '(Un)solving Morphological Inflection: Lemma Overlap Artificially Inflates Models' Performance'. Together they form a unique fingerprint.

Cite this