Turbulent mixing of r-process elements in the Milky Way

Paz Beniamini, Kenta Hotokezaka

Research output: Contribution to journalArticlepeer-review

Abstract

We study turbulent gas diffusion affects on r-process abundances in Milky Way stars, by a combination of an analytical approach and a Monte Carlo simulation. Higher r-process event rates and faster diffusion, lead to more efficient mixing corresponding to a reduced scatter of r-process abundances and causing r-process enriched stars to start appearing at lower metallicities. We use three independent observations to constrain the model parameters: (i) the scatter of radioactively stable r-process element abundances, (ii) the largest r-process enrichment values observed in any solar neighborhood stars, and (iii) the isotope abundance ratios of different radioactive r-process elements (244Pu/238U and 247Cm/238U) at the early Solar system as compared to their formation. Our results indicate that the Galactic r-process rate and the diffusion coefficient are respectively r < 4 × 10−5 yr−1, D > 0.1 kpc2 Gyr−1 (r < 4 × 10−6 yr−1, D > 0.5 kpc2 Gyr−1 for collapsars or similarly prolific r-process sources) with allowed values satisfying an approximate anticorrelation such that D ≈ r−2/3, implying that the time between two r-process events that enrich the same location in the Galaxy, is τmix ≈ 100−200 Myr. This suggests that a fraction of ∼0.8 (∼0.5) of the observed 247Cm (244Pu) abundance is dominated by one r-process event in the early Solar system. Radioactively stable element abundances are dominated by contributions from ∼10 different events in the early Solar system. For metal poor stars (with [Fe/H] −2), their r-process abundances are dominated by either a single or several events, depending on the star formation history.

Original languageEnglish
Pages (from-to)1891-1901
Number of pages11
JournalMonthly Notices of the Royal Astronomical Society
Volume496
Issue number2
DOIs
StatePublished - 2020
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2020 The Author(s)

Keywords

  • Galaxy: abundances
  • Stars: abundances
  • Stars: neutron

Fingerprint

Dive into the research topics of 'Turbulent mixing of r-process elements in the Milky Way'. Together they form a unique fingerprint.

Cite this