The missing link: Merging neutron stars naturally produce jet-like structures and can power short gamma-ray bursts

Luciano Rezzolla, Bruno Giacomazzo, Luca Baiotti, Jonathan Granot, Chryssa Kouveliotou, Miguel A. Aloy

Research output: Contribution to journalArticlepeer-review

Abstract

Short gamma-ray bursts (SGRBs) are among the most luminous explosions in the universe, releasing in less than one second the energy emitted by our Galaxy over one year. Despite decades of observations, the nature of their "central engine" remains unknown. Considering a binary of magnetized neutron stars and solving the Einstein equations, we show that their merger results in a rapidly spinning black hole surrounded by a hot and highly magnetized torus. Lasting over 35ms and much longer than previous simulations, our study reveals that magnetohydrodynamical instabilities amplify an initially turbulent magnetic field of ∼1012G to produce an ordered poloidal field of ∼1015G along the black hole spin axis, within a half-opening angle of ∼30°, which may naturally launch a relativistic jet. The broad consistency of our ab initio calculations with SGRB observations shows that the merger of magnetized neutron stars can provide the basic physical conditions for the central engine of SGRBs.

Original languageEnglish
Article numberL6
JournalAstrophysical Journal Letters
Volume732
Issue number1 PART II
DOIs
StatePublished - 1 May 2011
Externally publishedYes

Keywords

  • black hole physics
  • gamma-ray burst: general
  • gravitational waves
  • magnetohydrodynamics (MHD)
  • methods: numerical
  • stars: neutron

Fingerprint

Dive into the research topics of 'The missing link: Merging neutron stars naturally produce jet-like structures and can power short gamma-ray bursts'. Together they form a unique fingerprint.

Cite this