Abstract
As an attempt to bridge the gap between classical information theory and the combinatorial world of zero-error information theory, this paper studies the performance of randomly generated codebooks over discrete memoryless channels under a zero-error constraint. This study allows the application of tools from one area to the other. Furthermore, it leads to an information-theoretic formulation of the birthday problem, which is concerned with the probability that in a given population, a fixed number of people have the same birthday. Due to the lack of a closed-form expression for this probability when the distribution of birthdays is not uniform, the resulting computation is not feasible in some applications; the information-theoretic formulation, however, can be analyzed for all distributions.
Original language | English |
---|---|
Title of host publication | 2017 IEEE International Symposium on Information Theory, ISIT 2017 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1648-1652 |
Number of pages | 5 |
ISBN (Electronic) | 9781509040964 |
DOIs | |
State | Published - 9 Aug 2017 |
Externally published | Yes |
Event | 2017 IEEE International Symposium on Information Theory, ISIT 2017 - Aachen, Germany Duration: 25 Jun 2017 → 30 Jun 2017 |
Publication series
Name | IEEE International Symposium on Information Theory - Proceedings |
---|---|
ISSN (Print) | 2157-8095 |
Conference
Conference | 2017 IEEE International Symposium on Information Theory, ISIT 2017 |
---|---|
Country/Territory | Germany |
City | Aachen |
Period | 25/06/17 → 30/06/17 |
Bibliographical note
Funding Information:ACKNOWLEDGMENTS This material is based upon work supported by the National Science Foundation under Grant Numbers 1321129, 1527524, and 1526771. The first author thanks Ming Fai Wong for helpful discussions regarding an earlier version of Theorem 2.
Publisher Copyright:
© 2017 IEEE.