Abstract
The 21-cm absorption feature reported by the EDGES collaboration is several times stronger than that predicted by traditional astrophysical models. If genuine, a deeper absorption may lead to stronger fluctuations on the 21-cm signal on degree scales (up to 1 K in rms), allowing these fluctuations to be detectable in nearly 50 times shorter integration times compared to previous predictions. We commenced the 'AARTFAAC Cosmic Explorer' (ACE) program, which employs the AARTFAAC wide-field image, to measure or set limits on the power spectrum of the 21-cm fluctuations in the redshift range z = 17.9-18.6 (Δν = 72.36-75.09 MHz) corresponding to the deep part of the EDGES absorption feature. Here, we present first results from two LST bins: 23.5-23.75 and 23.75-24.00 h, each with 2 h of data, recorded in 'semi drift-scan' mode. We demonstrate the application of the new ACE data-processing pipeline (adapted from the LOFAR-EoR pipeline) on the AARTFAAC data. We observe that noise estimates from the channel and time-differenced Stokes V visibilities agree with each other. After 2 h of integration and subtraction of bright foregrounds, we obtain 2σ upper limits on the 21-cm power spectrum of Δ221 < (8139 mK)2 and Δ221 < (8549 mK)2 at k = 0.144 hcMpc−1 for the two LST bins. Incoherently averaging the noise bias-corrected power spectra for the two LST bins yields an upper limit of Δ221 < (7388 mK)2 at k = 0.144 hcMpc−1. These are the deepest upper limits thus far at these redshifts.
Original language | English |
---|---|
Pages (from-to) | 4158-4173 |
Number of pages | 16 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 499 |
Issue number | 3 |
DOIs | |
State | Published - 1 Dec 2020 |
Bibliographical note
Publisher Copyright:© 2020 The Author(s)
Keywords
- Dark ages
- Diffuse radiation
- First stars
- Methods: data analysis
- Methods: statistical
- Radio lines: general
- Reionization
- Techniques: interferometric