TY - GEN
T1 - Submodular maximization with cardinality constraints
AU - Buchbinder, Niv
AU - Feldman, Moran
AU - Naor, Joseph
AU - Schwartz, Roy
PY - 2014
Y1 - 2014
N2 - We consider the problem of maximizing a (non-monotone) submodular function subject to a cardinality constraint. In addition to capturing well-known combinatorial optimization problems, e.g., Max-k-Coverage and Max-Bisection, this problem has applications in other more practical settings such as natural language processing, information retrieval, and machine learning. In this work we present improved approximations for two variants of the cardinality constraint for non-monotone functions. When at most k elements can be chosen, we improve the current best 1/e - o(1) approximation to a factor that is in the range [1/e + 0.004, 1/2], achieving a tight approximation of 1/2 - o(1) for k = n/2 and breaking the 1/e barrier for all values of k. When exactly k elements must be chosen, our algorithms improve the current best 1/4 - o(1) approximation to a factor that is in the range [0.356, 1/2], again achieving a tight approximation of 1/2 - o(1) for k = n/2. Additionally, some of the algorithms we provide are very fast with time complexities of O(nk), as opposed to previous known algorithms which are continuous in nature, and thus, too slow for applications in the practical settings mentioned above.Our algorithms are based on two new techniques. First, we present a simple randomized greedy approach where in each step a random element is chosen from a set of "reasonably good" elements. This approach might be considered a natural substitute for the greedy algorithm of Nemhauser, Wolsey and Fisher [45], as it retains the same tight guarantee of 1 - 1/e for monotone objectives and the same time complexity of 0(nk), while giving an approximation of 1/e for general non-monotone objectives (while the greedy algorithm of Nemhauser et. al. fails to provide any constant guarantee). Second, we extend the double greedy technique, which achieves a tight 1/2 approximation for unconstrained submodular maximization, to the continuous setting. This allows us to manipulate the natural rates by which elements change, thus bounding the total number of elements chosen.
AB - We consider the problem of maximizing a (non-monotone) submodular function subject to a cardinality constraint. In addition to capturing well-known combinatorial optimization problems, e.g., Max-k-Coverage and Max-Bisection, this problem has applications in other more practical settings such as natural language processing, information retrieval, and machine learning. In this work we present improved approximations for two variants of the cardinality constraint for non-monotone functions. When at most k elements can be chosen, we improve the current best 1/e - o(1) approximation to a factor that is in the range [1/e + 0.004, 1/2], achieving a tight approximation of 1/2 - o(1) for k = n/2 and breaking the 1/e barrier for all values of k. When exactly k elements must be chosen, our algorithms improve the current best 1/4 - o(1) approximation to a factor that is in the range [0.356, 1/2], again achieving a tight approximation of 1/2 - o(1) for k = n/2. Additionally, some of the algorithms we provide are very fast with time complexities of O(nk), as opposed to previous known algorithms which are continuous in nature, and thus, too slow for applications in the practical settings mentioned above.Our algorithms are based on two new techniques. First, we present a simple randomized greedy approach where in each step a random element is chosen from a set of "reasonably good" elements. This approach might be considered a natural substitute for the greedy algorithm of Nemhauser, Wolsey and Fisher [45], as it retains the same tight guarantee of 1 - 1/e for monotone objectives and the same time complexity of 0(nk), while giving an approximation of 1/e for general non-monotone objectives (while the greedy algorithm of Nemhauser et. al. fails to provide any constant guarantee). Second, we extend the double greedy technique, which achieves a tight 1/2 approximation for unconstrained submodular maximization, to the continuous setting. This allows us to manipulate the natural rates by which elements change, thus bounding the total number of elements chosen.
UR - http://www.scopus.com/inward/record.url?scp=84899631041&partnerID=8YFLogxK
U2 - 10.1137/1.9781611973402.106
DO - 10.1137/1.9781611973402.106
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:84899631041
SN - 9781611973389
T3 - Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
SP - 1433
EP - 1452
BT - Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014
PB - Association for Computing Machinery
T2 - 25th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014
Y2 - 5 January 2014 through 7 January 2014
ER -