TY - GEN
T1 - Staleness vs. waiting time in universal discrete broadcast
AU - Langberg, Michael
AU - Sprintson, Alexander
AU - Bruck, Jehoshua
PY - 2005
Y1 - 2005
N2 - In this paper we study the distribution of dynamic data over a broadcast channel to a large number of passive clients. The data is simultaneously distributed to clients in the form of discrete packets, each packet captures the most recent state of the information source. Clients obtain the information by accessing the channel and listening for the next available packet. This scenario, referred to as discrete broadcast, has many practical applications such as the distribution of stock information to wireless mobile devices and downloading up-to-date battle information in military networks. Our goal is minimize the amount of time a client has to wait in order to obtain a new data packet, i.e., the waiting time of the client. We show that we can significantly reduce the waiting time by adding redundancy to the schedule. We identify universal schedules that guarantee low waiting time for any client, regardless of the access pattern. A key point in the design of data distribution systems is to ensure that the transmitted information is always up-to-date. Accordingly, we introduce the notion of staleness that captures the amount of time that passes from the moment the information is generated, until it is delivered to the client. We investigate the fundamental trade-off between the staleness and the waiting time. In particular, we present schedules that yield lowest possible waiting time for any given staleness constraint.
AB - In this paper we study the distribution of dynamic data over a broadcast channel to a large number of passive clients. The data is simultaneously distributed to clients in the form of discrete packets, each packet captures the most recent state of the information source. Clients obtain the information by accessing the channel and listening for the next available packet. This scenario, referred to as discrete broadcast, has many practical applications such as the distribution of stock information to wireless mobile devices and downloading up-to-date battle information in military networks. Our goal is minimize the amount of time a client has to wait in order to obtain a new data packet, i.e., the waiting time of the client. We show that we can significantly reduce the waiting time by adding redundancy to the schedule. We identify universal schedules that guarantee low waiting time for any client, regardless of the access pattern. A key point in the design of data distribution systems is to ensure that the transmitted information is always up-to-date. Accordingly, we introduce the notion of staleness that captures the amount of time that passes from the moment the information is generated, until it is delivered to the client. We investigate the fundamental trade-off between the staleness and the waiting time. In particular, we present schedules that yield lowest possible waiting time for any given staleness constraint.
UR - http://www.scopus.com/inward/record.url?scp=33749452232&partnerID=8YFLogxK
U2 - 10.1109/ISIT.2005.1523721
DO - 10.1109/ISIT.2005.1523721
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:33749452232
SN - 0780391519
SN - 9780780391512
T3 - IEEE International Symposium on Information Theory - Proceedings
SP - 2124
EP - 2128
BT - Proceedings of the 2005 IEEE International Symposium on Information Theory, ISIT 05
T2 - 2005 IEEE International Symposium on Information Theory, ISIT 05
Y2 - 4 September 2005 through 9 September 2005
ER -