Abstract
It is common in the study of secure multicast network coding in the presence of an eavesdropper that has access to z network links, to assume that the source node is the only node that generates random keys. In this setting, the secure multicast rate is well understood. Computing the secure multicast rate, or even the secure unicast rate, in the more general setting in which all network nodes may generate (independent) random keys is known to be as difficult as computing the (non-secure) capacity of multiple-unicast network coding instances - a well known open problem. This work treats an intermediate model of secure unicast in which only one node can generate random keys, however that node need not be the source node. The secure communication rate for this setting is characterized again with an eavesdropper that has access to z network links.
Original language | English |
---|---|
Title of host publication | 2019 IEEE International Symposium on Information Theory, ISIT 2019 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 2309-2313 |
Number of pages | 5 |
ISBN (Electronic) | 9781538692912 |
DOIs | |
State | Published - Jul 2019 |
Externally published | Yes |
Event | 2019 IEEE International Symposium on Information Theory, ISIT 2019 - Paris, France Duration: 7 Jul 2019 → 12 Jul 2019 |
Publication series
Name | IEEE International Symposium on Information Theory - Proceedings |
---|---|
Volume | 2019-July |
ISSN (Print) | 2157-8095 |
Conference
Conference | 2019 IEEE International Symposium on Information Theory, ISIT 2019 |
---|---|
Country/Territory | France |
City | Paris |
Period | 7/07/19 → 12/07/19 |
Bibliographical note
Publisher Copyright:© 2019 IEEE.