Abstract
We present Variational Bayesian Network (VBN) - a novel Bayesian entity representation learning model that utilizes hierarchical and relational side information and is particularly useful for modeling entities in the "long-tail'', where the data is scarce. VBN provides better modeling for long-tail entities via two complementary mechanisms: First, VBN employs informative hierarchical priors that enable information propagation between entities sharing common ancestors. Additionally, VBN models explicit relations between entities that enforce complementary structure and consistency, guiding the learned representations towards a more meaningful arrangement in space. Second, VBN represents entities by densities (rather than vectors), hence modeling uncertainty that plays a complementary role in coping with data scarcity. Finally, we propose a scalable Variational Bayes optimization algorithm that enables fast approximate Bayesian inference. We evaluate the effectiveness of VBN on linguistic, recommendations, and medical inference tasks. Our findings show that VBN outperforms other existing methods across multiple datasets, and especially in the long-tail.
Original language | English |
---|---|
Title of host publication | CIKM 2021 - Proceedings of the 30th ACM International Conference on Information and Knowledge Management |
Publisher | Association for Computing Machinery |
Pages | 78-88 |
Number of pages | 11 |
ISBN (Electronic) | 9781450384469 |
DOIs | |
State | Published - 26 Oct 2021 |
Event | 30th ACM International Conference on Information and Knowledge Management, CIKM 2021 - Virtual, Online, Australia Duration: 1 Nov 2021 → 5 Nov 2021 |
Publication series
Name | International Conference on Information and Knowledge Management, Proceedings |
---|
Conference
Conference | 30th ACM International Conference on Information and Knowledge Management, CIKM 2021 |
---|---|
Country/Territory | Australia |
City | Virtual, Online |
Period | 1/11/21 → 5/11/21 |
Bibliographical note
Publisher Copyright:© 2021 ACM.
Keywords
- approximate bayesian inference
- bayesian hierarchical models
- collaborative filtering
- deep learning
- medical informatics
- natural language processing
- recommender systems
- representation learning
- variational bayesian networks