Rapid Synthesis of Massive Face Sets for Improved Face Recognition

Iacopo Masi, Tal Hassner, Anh Tuan Tran, Gerard Medioni

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Recent work demonstrated that computer graphics techniques can be used to improve face recognition performances by synthesizing multiple new views of faces available in existing face collections. By so doing, more images and more appearance variations are available for training, thereby improving the deep models trained on these images. Similar rendering techniques were also applied at test time to align faces in 3D and reduce appearance variations when comparing faces. These previous results, however, did not consider the computational cost of rendering: At training, rendering millions of face images can be prohibitive; at test time, rendering can quickly become a bottleneck, particularly when multiple images represent a subject. This paper builds on a number of observations which, under certain circumstances, allow rendering new 3D views of faces at a computational cost which is equivalent to simple 2D image warping. We demonstrate this by showing that the run-time of an optimized OpenGL rendering engine is slower than the simple Python implementation we designed for the same purpose. The proposed rendering is used in a face recognition pipeline and tested on the challenging IJB-A and Janus CS2 benchmarks. Our results show that our rendering is not only fast, but improves recognition accuracy.

Original languageEnglish
Title of host publicationProceedings - 12th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2017 - 1st International Workshop on Adaptive Shot Learning for Gesture Understanding and Production, ASL4GUP 2017, Biometrics in the Wild, Bwild 2017, Heterogeneous Face Recognition, HFR 2017, Joint Challenge on Dominant and Complementary Emotion Recognition Using Micro Emotion Features and Head-Pose Estimation, DCER and HPE 2017 and 3rd Facial Expression Recognition and Analysis Challenge, FERA 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages604-611
Number of pages8
ISBN (Electronic)9781509040230
DOIs
StatePublished - 28 Jun 2017
Event12th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2017 - Washington, United States
Duration: 30 May 20173 Jun 2017

Publication series

NameProceedings - 12th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2017 - 1st International Workshop on Adaptive Shot Learning for Gesture Understanding and Production, ASL4GUP 2017, Biometrics in the Wild, Bwild 2017, Heterogeneous Face Recognition, HFR 2017, Joint Challenge on Dominant and Complementary Emotion Recognition Using Micro Emotion Features and Head-Pose Estimation, DCER and HPE 2017 and 3rd Facial Expression Recognition and Analysis Challenge, FERA 2017

Conference

Conference12th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2017
Country/TerritoryUnited States
CityWashington
Period30/05/173/06/17

Bibliographical note

Publisher Copyright:
© 2017 IEEE.

Fingerprint

Dive into the research topics of 'Rapid Synthesis of Massive Face Sets for Improved Face Recognition'. Together they form a unique fingerprint.

Cite this