Proactive Image Manipulation Detection

Vishal Asnani, Xi Yin, Tal Hassner, Sijia Liu, Xiaoming Liu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Image manipulation detection algorithms are often trained to discriminate between images manipulated with particular Generative Models (GMs) and genuine/real images, yet generalize poorly to images manipulated with GMs unseen in the training. Conventional detection algorithms receive an input image passively. By contrast, we propose a proactive scheme to image manipulation detection. Our key enabling technique is to estimate a set of templates which when added onto the real image would lead to more accurate manipulation detection. That is, a template protected real image, and its manipulated version, is better discriminated compared to the original real image vs. its manipulated one. These templates are estimated using certain constraints based on the desired properties of templates. For image manipulation detection, our proposed approach outperforms the prior work by an average precision of 16%for CycleGAN and 32% for GauGAN. Our approach is generalizable to a variety of GMs showing an improvement over prior work by an average precision of 10% averaged across 12 GMs. Our code is available at https://www.github.com/vishal3477/proactive_IMD.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PublisherIEEE Computer Society
Pages15365-15374
Number of pages10
ISBN (Electronic)9781665469463
DOIs
StatePublished - 2022
Event2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, United States
Duration: 19 Jun 202224 Jun 2022

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2022-June
ISSN (Print)1063-6919

Conference

Conference2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Country/TerritoryUnited States
CityNew Orleans
Period19/06/2224/06/22

Bibliographical note

Publisher Copyright:
© 2022 IEEE.

Keywords

  • Adversarial attack and defense
  • Computer vision for social good
  • Low-level vision

Fingerprint

Dive into the research topics of 'Proactive Image Manipulation Detection'. Together they form a unique fingerprint.

Cite this