TY - JOUR
T1 - Preserving privacy in region optimal DCOP algorithms
AU - Tassa, Tamir
AU - Zivan, Roie
AU - Grinshpoun, Tal
N1 - Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2016
Y1 - 2016
N2 - Region-optimal algorithms are local search algorithms for the solution of Distributed Constraint Optimization Problems (DCOPs). In each iteration of the search in such algorithms, every agent selects a group of agents that comply with some selection criteria (each algorithm specifies different criteria). Then, the agent who selected the group, called the mediator, collects assignment information from the group and neighboring agents outside the group, in order to find an optimal set of assignments for its group's agents. A contest between mediators of adjacent groups determines which groups will replace their assignments in that iteration to the found optimal ones. In this work we present a framework called RODA (Region- Optimal DCOP Algorithm) that encompasses the algorithms in the region-optimality family, and in particular any method for selecting groups. We devise a secure implementation of RODA, called PRODA, which preserves constraint privacy and partial decision privacy. The two main cryptographic means that enable this privacy preservation are secret sharing and homomorphic encryption. We estimate the computational overhead of P-RODA with respect to RODA and give an upper bound that depends on the group and domain sizes and the graph topology but not on the number of agents. The estimations are backed with experimental results.
AB - Region-optimal algorithms are local search algorithms for the solution of Distributed Constraint Optimization Problems (DCOPs). In each iteration of the search in such algorithms, every agent selects a group of agents that comply with some selection criteria (each algorithm specifies different criteria). Then, the agent who selected the group, called the mediator, collects assignment information from the group and neighboring agents outside the group, in order to find an optimal set of assignments for its group's agents. A contest between mediators of adjacent groups determines which groups will replace their assignments in that iteration to the found optimal ones. In this work we present a framework called RODA (Region- Optimal DCOP Algorithm) that encompasses the algorithms in the region-optimality family, and in particular any method for selecting groups. We devise a secure implementation of RODA, called PRODA, which preserves constraint privacy and partial decision privacy. The two main cryptographic means that enable this privacy preservation are secret sharing and homomorphic encryption. We estimate the computational overhead of P-RODA with respect to RODA and give an upper bound that depends on the group and domain sizes and the graph topology but not on the number of agents. The estimations are backed with experimental results.
UR - http://www.scopus.com/inward/record.url?scp=85006147237&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.conferencearticle???
AN - SCOPUS:85006147237
SN - 1045-0823
VL - 2016-January
SP - 496
EP - 502
JO - IJCAI International Joint Conference on Artificial Intelligence
JF - IJCAI International Joint Conference on Artificial Intelligence
T2 - 25th International Joint Conference on Artificial Intelligence, IJCAI 2016
Y2 - 9 July 2016 through 15 July 2016
ER -