Precise detection in densely packed scenes

Eran Goldman, Roei Herzig, Aviv Eisenschtat, Jacob Goldberger, Tal Hassner

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Man-made scenes are often densely packed, containing numerous objects, often identical, positioned in close proximity. We show that precise object detection in such scenes remains a challenging frontier even for state-of-the-art object detectors. We propose a novel, deep-learning based method for precise object detection, designed for such challenging settings. Our contributions include: (1) A layer for estimating the Jaccard index as a detection quality score; (2) a novel EM merging unit, which uses our quality scores to resolve detection overlap ambiguities; finally, (3) an extensive, annotated data set, SKU-110K, representing packed retail environments, released for training and testing under such extreme settings. Detection tests on SKU-110K, and counting tests on the CARPK and PUCPR+, show our method to outperform existing state-of-the-art with substantial margins.

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
PublisherIEEE Computer Society
Pages5222-5231
Number of pages10
ISBN (Electronic)9781728132938
DOIs
StatePublished - Jun 2019
Event32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States
Duration: 16 Jun 201920 Jun 2019

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2019-June
ISSN (Print)1063-6919

Conference

Conference32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
Country/TerritoryUnited States
CityLong Beach
Period16/06/1920/06/19

Bibliographical note

Publisher Copyright:
© 2019 IEEE.

Keywords

  • Categorization
  • Recognition: Detection
  • Retrieval

Fingerprint

Dive into the research topics of 'Precise detection in densely packed scenes'. Together they form a unique fingerprint.

Cite this