Abstract
We introduce a new rounding technique designed for online optimization problems, which is related to contention resolution schemes, a technique initially introduced in the context of submodular function maximization. Our rounding technique, which we call online contention resolution schemes (OCRSs), is applicable to many online selection problems, including Bayesian online selection, oblivious posted pricing mechanisms, and stochastic probing models. It allows for handling a wide set of constraints and shares many strong properties of offline contention resolution schemes. In particular, OCRSs for different constraint families can be combined to obtain an OCRS for their intersection. Moreover, we can approximately maximize submodular functions in the online settings we consider. We thus get a broadly applicable framework for several online selection problems, which improves on previous approaches in terms of the types of constraints that can be handled, the objective functions that can be dealt with, and the assumptions on the strength of the adversary. Furthermore, we resolve two open problems from the literature; namely, we present the first constant-factor constrained oblivious posted price mechanism for matroid constraints and the first constant-factor algorithm for weighted stochastic probing with deadlines.
Original language | English |
---|---|
Pages (from-to) | 255-300 |
Number of pages | 46 |
Journal | SIAM Journal on Computing |
Volume | 50 |
Issue number | 2 |
DOIs | |
State | Published - 2021 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2021 Moran Feldman, Ola Svensson, and Rico Zenklusen
Keywords
- Contention resolution schemes
- Matroids
- Oblivious posted pricing
- Online algorithms
- Prophet inequalities
- Stochastic probing