On Flipping the Fréchet Distance

Omrit Filtser, Mayank Goswami, Joseph S.B. Mitchell, Valentin Polishchuk

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The classical and extensively-studied Fréchet distance between two curves is defined as an inf max, where the infimum is over all traversals of the curves, and the maximum is over all concurrent positions of the two agents. In this article we investigate a “flipped” Fréchet measure defined by a sup min - the supremum is over all traversals of the curves, and the minimum is over all concurrent positions of the two agents. This measure produces a notion of “social distance” between two curves (or general domains), where agents traverse curves while trying to stay as far apart as possible. We first study the flipped Fréchet measure between two polygonal curves in one and two dimensions, providing conditional lower bounds and matching algorithms. We then consider this measure on polygons, where it denotes the minimum distance that two agents can maintain while restricted to travel in or on the boundary of the same polygon. We investigate several variants of the problem in this setting, for some of which we provide linear time algorithms. Finally, we consider this measure on graphs. We draw connections between our proposed flipped Fréchet measure and existing related work in computational geometry, hoping that our new measure may spawn investigations akin to those performed for the Fréchet distance, and into further interesting problems that arise.

Original languageEnglish
Title of host publication14th Innovations in Theoretical Computer Science Conference, ITCS 2023
EditorsYael Tauman Kalai
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Pages51:1-51:22
Number of pages22
ISBN (Electronic)9783959772631
DOIs
StatePublished - 1 Jan 2023
Event14th Innovations in Theoretical Computer Science Conference, ITCS 2023 - Cambridge, United States
Duration: 10 Jan 202313 Jan 2023

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume251
ISSN (Print)1868-8969

Conference

Conference14th Innovations in Theoretical Computer Science Conference, ITCS 2023
Country/TerritoryUnited States
CityCambridge
Period10/01/2313/01/23

Bibliographical note

Publisher Copyright:
© Omrit Filtser, Mayank Goswami, Joseph S. B. Mitchell, and Valentin Polishchuk; licensed under Creative Commons License CC-BY 4.0.

Keywords

  • curves
  • distancing measure
  • polygons

Fingerprint

Dive into the research topics of 'On Flipping the Fréchet Distance'. Together they form a unique fingerprint.

Cite this