On an equivalence of the reduction of k-unicast to 2-unicast capacity and the edge removal property

Ming Fai Wong, Michelle Effros, Michael Langberg

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In recent work, Kamath et al. show that network code design for any k-unicast network reduces to network code design for a related 2-unicast network. The proof assumes that codes achieve their desired rates precisely (rather than approaching them asymptotically) and that error probability equals zero. We study two questions posed in but left unanswered by the Kamath et al. paper. The first asks whether the reduction for 0-error code design can be extended to show an equivalence in 0-error network capacity, which includes rates approached asymptotically. The second asks whether the reduction can be generalized to show an equivalence in Shannon capacity, which requires that error probability approach (but not necessarily hit) zero. While we do not solve these questions, we show that finding the k-unicast capacity reduces to finding the 2-unicast capacity under this reduction if and only if the so called 'edge removal statement' is true for all networks. This equivalence holds under both 0-error and asymptotic notions of reliability.

Original languageEnglish
Title of host publicationProceedings - 2015 IEEE International Symposium on Information Theory, ISIT 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages371-375
Number of pages5
ISBN (Electronic)9781467377041
DOIs
StatePublished - 28 Sep 2015
Externally publishedYes
EventIEEE International Symposium on Information Theory, ISIT 2015 - Hong Kong, Hong Kong
Duration: 14 Jun 201519 Jun 2015

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2015-June
ISSN (Print)2157-8095

Conference

ConferenceIEEE International Symposium on Information Theory, ISIT 2015
Country/TerritoryHong Kong
CityHong Kong
Period14/06/1519/06/15

Bibliographical note

Publisher Copyright:
© 2015 IEEE.

Fingerprint

Dive into the research topics of 'On an equivalence of the reduction of k-unicast to 2-unicast capacity and the edge removal property'. Together they form a unique fingerprint.

Cite this