Navigating Text-to-Image Generative Bias Across Indic Languages

Surbhi Mittal, Arnav Sudan, Mayank Vatsa, Richa Singh, Tamar Glaser, Tal Hassner

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This research investigates biases in text-to-image (TTI) models for the Indic languages widely spoken across India. It evaluates and compares the generative performance and cultural relevance of leading TTI models in these languages against their performance in English. Using the proposed IndicTTI benchmark, we comprehensively assess the performance of 30 Indic languages with two open-source diffusion models and two commercial generation APIs. The primary objective of this benchmark is to evaluate the support for Indic languages in these models and identify areas needing improvement. Given the linguistic diversity of 30 languages spoken by over 1.4 billion people, this benchmark aims to provide a detailed and insightful analysis of TTI models’ effectiveness within the Indic linguistic landscape. The data and code for the IndicTTI benchmark can be accessed at https://iab-rubric.org/resources/other-databases/indictti.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2024 - 18th European Conference, Proceedings
EditorsAleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, Gül Varol
PublisherSpringer Science and Business Media Deutschland GmbH
Pages53-67
Number of pages15
ISBN (Print)9783031732225
DOIs
StatePublished - 2025
Externally publishedYes
Event18th European Conference on Computer Vision, ECCV 2024 - Milan, Italy
Duration: 29 Sep 20244 Oct 2024

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume15146 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference18th European Conference on Computer Vision, ECCV 2024
Country/TerritoryItaly
CityMilan
Period29/09/244/10/24

Bibliographical note

Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

Keywords

  • bias
  • multilingual
  • text-to-image generation

Fingerprint

Dive into the research topics of 'Navigating Text-to-Image Generative Bias Across Indic Languages'. Together they form a unique fingerprint.

Cite this