TY - CHAP
T1 - Metric structures in L1
T2 - Dimension, snowflakes, and average distortion
AU - Lee, James R.
AU - Mendel, Manor
AU - Naor, Assaf
PY - 2004
Y1 - 2004
N2 - We study the metric properties of finite subsets of L1. The analysis of such metrics is central to a number of important algorithmic problems involving the cut structure of weighted graphs, including the Sparsest Cut Problem, one of the most compelling open problems in the field of approximation. Additionally, many open questions in geometric non-linear functional analysis involve the properties of finite subsets of L1. We present some new observations concerning the relation of L1 to dimension, topology, and Euclidean distortion. We show that every n-point subset of L1 embeds into L2 with average distortion O(√log n), yielding the first evidence that the conjectured worst-case bound of O(√log n) is valid. We also address the issue of dimension reduction in Lp for p ∈(1,2). We resolve a question left open in [1] about the impossibility of linear dimension reduction in the above cases, and we show that the example of [2,3] cannot be used to prove a lower bound for the non-linear case. This is accomplished by exhibiting constant-distortion embeddings of snowflaked planar metrics into Euclidean space.
AB - We study the metric properties of finite subsets of L1. The analysis of such metrics is central to a number of important algorithmic problems involving the cut structure of weighted graphs, including the Sparsest Cut Problem, one of the most compelling open problems in the field of approximation. Additionally, many open questions in geometric non-linear functional analysis involve the properties of finite subsets of L1. We present some new observations concerning the relation of L1 to dimension, topology, and Euclidean distortion. We show that every n-point subset of L1 embeds into L2 with average distortion O(√log n), yielding the first evidence that the conjectured worst-case bound of O(√log n) is valid. We also address the issue of dimension reduction in Lp for p ∈(1,2). We resolve a question left open in [1] about the impossibility of linear dimension reduction in the above cases, and we show that the example of [2,3] cannot be used to prove a lower bound for the non-linear case. This is accomplished by exhibiting constant-distortion embeddings of snowflaked planar metrics into Euclidean space.
UR - http://www.scopus.com/inward/record.url?scp=35048840167&partnerID=8YFLogxK
U2 - 10.1007/978-3-540-24698-5_44
DO - 10.1007/978-3-540-24698-5_44
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.chapter???
AN - SCOPUS:35048840167
SN - 3540212582
SN - 9783540212584
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 401
EP - 412
BT - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
A2 - Farach-Colton, Martin
PB - Springer Verlag
ER -