Is extracellular calcium buffering involved in regulation of transmitter release at the neuromuscular junction?

Simona Ginsburg, Rami Rahamimoff

Research output: Contribution to journalArticlepeer-review

Abstract

During synaptic activity at the neuromuscular junction, sodium, potassium and calcium ions flow through both the postsynaptic and presynaptic membrane1-4. These ionic fluxes can cause changes in the local extracellular concentration in the synaptic gap: a decrease in the concentration of the inwardly flowing ions (sodium and calcium) and an increase in the outwardly flowing potassium ions5. To check whether depletion of calcium ions in the synaptic gap is involved in transmitter release, we have used calcium buffers to keep the extracellular calcium concentration almost constant. The expectation was that if depletion does occur, transmitter release will increase; if no depletion occurs, there will be no change in quantal release when the calcium concentration is the same in buffered and unbuffered bathing solutions. We report here that, surprisingly, perfusing the frog neuromuscular preparation with a calcium-buffered solution caused a decrease in transmitter release compared with that in an unbuffered solution with the same calcium concentration6. This presumably indicates that the calcium level in the synaptic cleft is higher than that in the bulk extracellular medium. If such a mechanism operates physiologically, it may provide an energetically economical way to determine the level of evoked transmitter release and thus synaptic efficiency.

Original languageEnglish
Pages (from-to)62-64
Number of pages3
JournalNature
Volume306
Issue number5938
DOIs
StatePublished - 1983

Fingerprint

Dive into the research topics of 'Is extracellular calcium buffering involved in regulation of transmitter release at the neuromuscular junction?'. Together they form a unique fingerprint.

Cite this